Decoding the molecular evolution of human cognition using comparative genomics.
نویسندگان
چکیده
Identification of genetic and molecular factors responsible for the specialized cognitive abilities of humans is expected to provide important insights into the mechanisms responsible for disorders of cognition such as autism, schizophrenia and Alzheimer's disease. Here, we discuss the use of comparative genomics for identifying salient genes and gene networks that may underlie cognition. We focus on the comparison of human and non-human primate brain gene expression and the utility of building gene coexpression networks for prioritizing hundreds of genes that differ in expression among the species queried. We also discuss the importance of and methods for functional studies of the individual genes identified. Together, this integration of comparative genomics with cellular and animal models should provide improved systems for developing effective therapeutics for disorders of cognition.
منابع مشابه
Comparative genomics of human stem cell factor (SCF)
Stem cell factor (SCF) is a critical protein with key roles in the cell such as hematopoiesis, gametogenesis and melanogenesis. In the present study a comparative analysis on nucleotide sequences of SCF was performed in Humanoids using bioinformatics tools including NCBI-BLAST, MEGA6, and JBrowse. Our analysis of nucleotide sequences to find closely evolved organisms with high similarity by NCB...
متن کاملStrain diversity within Mycobacterium avium subspecies paratuberculosis--a review.
Mycobacterium avium subspecies paratuberculosis (MAP), is the etiological agent of Johne's disease (or paratuberculosis) in animals and has also been linked with Crohn's disease of human beings. Extreme fastidious nature of the organism (MAP) has hampered studies on diversity within the organism. Studies based on phenotypic properties like growth rate, pigmentation, lipid profile etc., are unab...
متن کاملComparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp.
Using the (near) complete genome sequences of the yeasts Candida albicans, Saccharomyces cerevisiae, and Schizosaccharomyces pombe, we address the evolution of a unique genetic code change, which involves decoding of the standard leucine-CTG codon as serine in Candida spp. By using two complementary comparative genomics approaches, we have been able to shed new light on both the origin of the n...
متن کاملInferring divergence of context-dependent substitution rates in Drosophila genomes with applications to comparative genomics.
Nucleotide substitution is a major evolutionary driving force that can incrementally and stochastically give rise to broad divergence patterns among species. The substitution process at each genomic position is frequently modeled independently of the other positions, although complex interactions between nearby bases are known to significantly affect mutation rates. Here, we study the evolution...
متن کاملLinking Fold, Function and Phylogeny: A Comparative Genomics View on Protein (Domain) Evolution
Domains are the building blocks of all globular proteins and present one of the most useful levels at which protein function can be understood. Through recombination and duplication of a limited set of domains, proteomes evolved and the collection of protein superfamilies in an organism formed. As such, the presence of a shared domain can be regarded as an indicator of similar function and evol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain, behavior and evolution
دوره 84 2 شماره
صفحات -
تاریخ انتشار 2014